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•	Radical(-containing) polymers possess 
intriguing redox, optoelectronic, and 
magnetic characteristics.

•	Applications range from energy or memory 
storage to optoelectronics and spintronics.

•	Coupling of electronic and conformational 
degrees of freedom over a wide range of 
spatiotemporal scales determines their 
properties.

•	State-of-the-art modeling to 
establish relationships between   
molecular structure, morphology                               
and electronic properties:
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ABSTRACT: Macromolecular radicals, radical polymers, and
polyradicals bear unique functionalities derived from their pendant
radical groups. The increasing need for organic functional materials is
driving the growth in research interest in macromolecular radicals for
batteries, electronics, memory, and imaging. This Viewpoint
summarizes the current state-of-knowledge regarding the macro-
molecular nitroxide radicals’ redox mechanism, conductivity, chain
conformation, controlled polymerization, network structure, con-
jugated forms, and applications. The nitroxide radical group is the
focus because it is the most widely studied. Although most literature
focuses upon applications, an emerging body of work is highlighting
the fundamental physicochemical properties of macromolecular
radicals. To this end, this Viewpoint recommends areas of
opportunity in fundamental studies and best practices in reporting.

With the increasing demand for metal-free functional
materials, the field of macromolecular radicals is

experiencing rapid growth. However, since the first early
reports of macromolecular stable free nitrogen radicals in
19621 and similar nitroxide radicals in 1972,2 their
fundamental physicochemical behaviors are still poorly under-
stood. This Viewpoint highlights our interpretations of the
challenges and opportunities toward revealing the fundamental
nature of this interesting polymer class, specifically those
bearing nitroxide radical groups.
In this Viewpoint, a macromolecular radical is defined as a

macromolecule that carries a stable radical group. As a specific
example, one of the most well-studied macromolecular radicals
is poly(2,2,6,6-tetramethylpiperidinyloxy methacrylate)
(PTMA), which is a polymethacrylate that bears pendant
nitroxide radical TEMPO (2,2,6,6-tetramethylpiperidin-1-oxyl)
groups. There are inconsistencies over the name of this
polymer class, with labels such as organic radical polymer,3,4

radical polymer,5−8 redoxmers (redox-mers),9 nitroxide radical
polymer,10,11 polymeric electron carriers,12 polyradical,13,14

redox resin, redox polymer,15 redox-active polymer,16 and
electroactive polymer17 being used. IUPAC recommends using
the term “macroradical”,18 which we adopt herein as
“macromolecular radical”.
Among macromolecular radicals, the nitroxide radical group

is the most studied because of its relative stability in ambient
conditions, synthetic ease, and functionality. In 1982, Kishita
and co-workers reported the first evidence of PTMA’s redox
activity, in which the nitroxide group reversibly oxidizes to an

oxoammonium cation.19 Twenty years later, Nakahara et al.
reported the first application of PTMA as an organic radical
cathode for a rechargeable battery, having a theoretical capacity
of 111 mAh g−1.20 This led to the significant advancement of
PTMA and other macromolecular nitroxide radicals for energy
storage by the Nishide and Oyaizu groups over the coming
decades.10,21−36 Later, the redox activity of the nitroxide group
was exploited to produce the first rewriteable memory device
for these materials in 2007.6 The Boudouris group in 2013 and
onward examined the solid-state electronic conductivity of
macromolecular nitroxide radicals, culminating in their 2018
report of the highest conductivity to date of 28 S m−1.37−39

Whereas the last 20 to 30 years have been heavily focused on
the application of macromolecular nitroxide radicals, the past
decade has witnessed a growth in fundamental investigations of
the charge-transfer mechanism, mass-transfer mechanism, and
chain conformation. In our opinion, there is an ample
opportunity to apply fundamental polymer physics and
chemistry to this unusual class of polymer, and we predict
that there will be great growth in this regard in the coming
years. To this end, our Viewpoint focuses upon the current
state-of-knowledge in the macromolecular nitroxide radical
chain conformation, redox mechanism, conductivity, con-
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nonconjugated, 
radical-containing polymer

conduction

applications

backmapping quantum 
chemistry 

CG morphology AA morphology Electronic properties

Reith, Putz, Muller-Plath, J. Comput. Chem. 2003
Jackson, Bowen, Antony, Webb, Vishwanath, de Pablo, Sci. Adv. 2019
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•	Prediction of monomer conformation-dependent electronic 
properties at CG resolution.
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•	NO• description essential to predict energy levels of nitroxide-
based radical polymers.

•	Direction: design CG model that preserves the NO• orientation
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•	Prediction of electronic couplings is more data-intensive.  
•	NO• description not necessary.
•	Smaller gap between AA/UA and CG resolutions.

•	Predictions in agreement with reference backmapping-based 
approach.  

•	Structural accuracy of CG model is essential.
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