

Tackling Materials and Manufacturing Innovation Challenges with Digitalised Translation – from conceptualisation to ontology

Michael Noeske, Fraunhofer IFAM, DE Jesper Friis, SINTEF, NO Emanuele Ghedini, UNIBO, IT

Our perspectives

Tackling Materials and Manufacturing
Innovation Challenges with
Digitalised Translation –
from conceptualisation to ontology

Michael:

How can we accomplish innovation in manufacturing?

Emanuele:

How can we understand materials and each other?

Jesper:

How can we communicate and share materials data?

Translation in manufacturing

Make innovation a white box and FAIR – for us

- In manufacturing, following DIN EN ISO 9000:2015-11
 - innovation relates to a new or changed object realizing or redistributing value
 - activities resulting in innovation are generally managed.
- Translators support innovation managers by
 - performing translation, a dialogue-based semiotic process
 - translating a need into a solution.

Innovation challenges

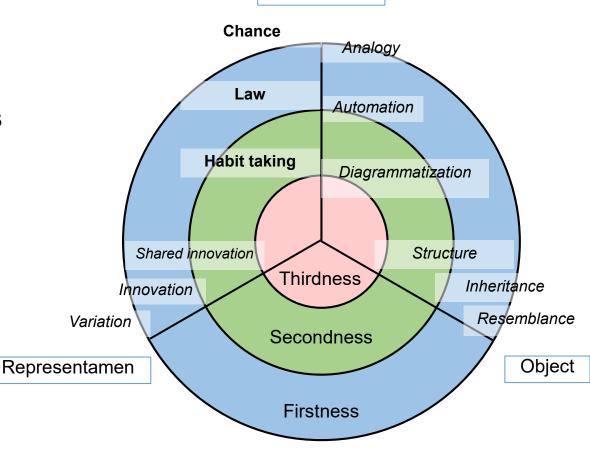
Embrace translation in a holistic way¹

- The high-level innovation challenge is global, and so is the high-level value to be realized.
- Ecosystems are formed to
 - gain speed
 - join efforts
 - comprise further generations.
- An individual innovation case and new product is part of a global scenario.

Information challenges

Embrace translation in a holistic way

- The quality of products (materials, services) is governed by the quality of information exchange.
 - The communicative key expertise "translation" facilitates mutual understanding.
 - Holistic dialogues are meant to comprise more than two stakeholders.
- Ontologies are fundamental for level-comprehensive, holistic and cooperative translation.
 - In H2020 OntoTrans, ontologizing (based on EMMO) is pathbreaking for boosting translation.


Translation challenges

Follow a human-centric way

- Translation in (natural) language:
 - dynamically applying A→ D → I triades
 - for achieving "shared innovation"
 - sketch adapted^{2a}

Diagrammatic reasoning at three consecutive levels

- "reveal the chance/challenge"
 - Abductive reasoning (firstness), intersemiotic
 - "taking your best shot"^{2b}
- find the law to be applied"
 - "Deductive reasoning (secondness), interlingual
 - "conclusion guaranteed"^{2b}
- habitually/customarily perform magic!
 - Inductive reasoning (thirdness), intralingual
 - "move from the specific to the general"^{2b}

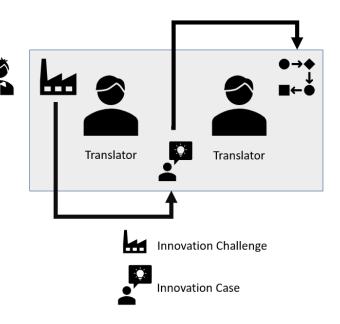
Interpretant

^{2b} https://www.butte.edu/departments/cas/tipsheets/thinking/reasoning.html; ^{2a} J. Pelkey, Peircean Semiotic for Language and Linguistics, DOI: 10.5040/9781350076143.ch-14

Translation as a White Box

Communicate the way and conclude step by step

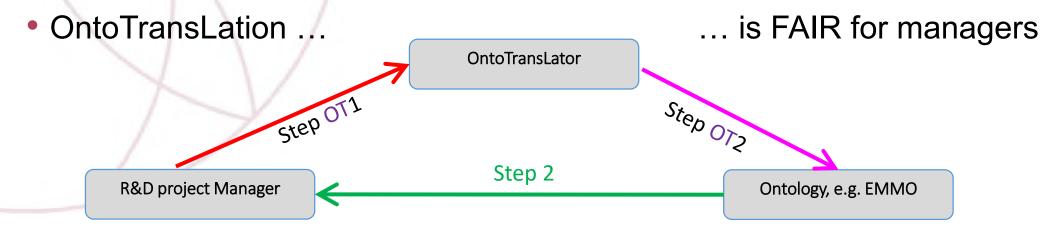
- Dialogue partners may opt for convention-based semiosis (translation),
 - e.g. DIN EN ISO 17100:2016 "Requirements for translation services"
 - e.g. DIN 6701-3:2015-12 "Adhesive bonding of railway vehicles and parts Part 3: **Guideline** for construction design ...", a **(check)list** of requirements
 - e.g. EMMC Translators **Guide**³
- Stepwise conclusion among dialogue partners
 - after each A, D, or I step
 - after each A→ D → I triade ("dynamic interpretant")
 - after each of the six steps of translation in Materials Modelling



OntoTranslator uses ontologisation

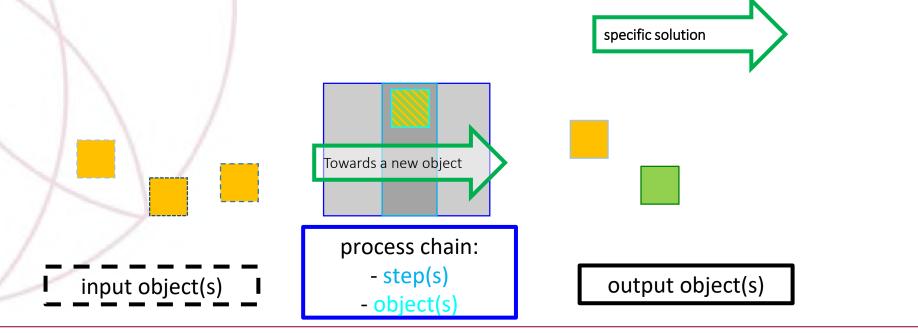
- Translators perform translation,
 - a dialogue-based semiotic process.

- a further semiotic process.
- This requires the expertise of an OntoTransLator.


Clients

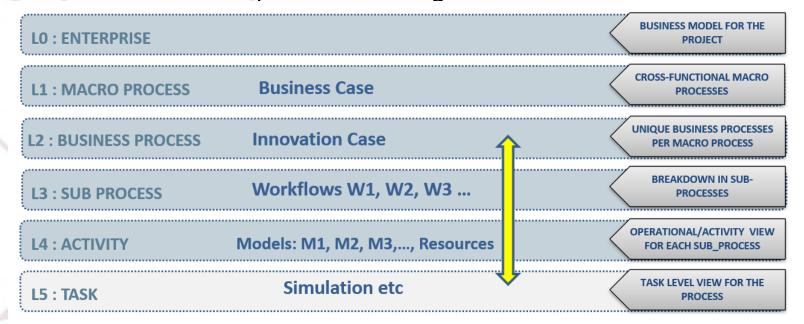
OntoTranslator uses semantic technologies (e.g. ontologies)

Innovation in manufacturing



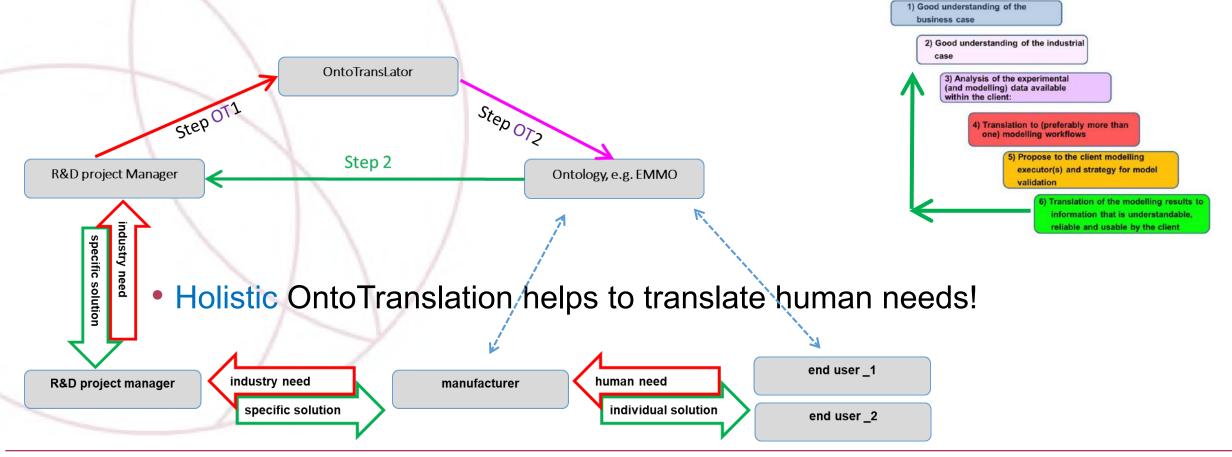
OntoTranslator and manager "share" concepts

- Dialogue partners may opt for convention-based ontologisation,
 - e.g. in step OT1, Manager|Translator sketch their conceptualisation



Innovation Cases in Organisations

OntoTranslator and manager agree on project framework


- in dialogue manager|translator
 - innovation-relevant options for changes are elaborated

Sketch from: P. Klein et al., Translation in Materials Modelling – Process and Progress, DOI: 10.5281/zenodo.4729918

OntoTranslator and manager cooperatively find a first solution

Innovation Case in Ontology

OntoTranslator formalises Manager|Translator's conceptualisation

- following dialogue manager|translator,
 the OntoTranslator (team)
 - integrates objects and processes of the innovation case
 - with a FAIR framework provided by an ontology
 - realises the perspective used by the Manager
 - greatly profiting from guidance by a multi-perspective ontology, e.g. EMMO
 - links conceptualisation with (e.g. perspective-specific) ontology branch
 - concepts are related to appropriate ontological classes
 - interactions are related to ontological relations
 - individuals are related to ontological entities/things

Our perspectives

Tackling Materials and Manufacturing
Innovation Challenges with
Digitalised Translation –
from conceptualisation to ontology

Michael:

How can we accomplish innovation in manufacturing?

Emanuele:

How can we understand materials and each other?

Jesper:

How can we communicate and share materials data?

Our perspectives

Tackling Materials and Manufacturing
Innovation Challenges with
Digitalised Translation –
from conceptualisation to ontology

Michael:

How can we accomplish innovation in manufacturing?

Emanuele:

How can we understand materials and each other?

Jesper:

How can we communicate and share materials data?

The OntoTrans project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 862136.