Accelerated Materials Discovery: OLEDs, catalysts, polymers, batteries

Reducing time to market & research costs through computer-aided design and multi-scale modeling

Fedor Goumans, Chief Customer Officer goumans@scm.com

Contents

• History & overview

- o Background, Software Products
- o Collaborative projects

• Current capabilities

- o Catalysts
- o Display materials, OLEDs
- **Batteries**
- o Polymers
- Multi-scale developments
	- o Multi-scale reactor modeling
	- o Multi-scale device modeling: OLEDs, batteries

EMMC Meeting, March 2-3, 2021 © SCM 2

Software for Chemistry & Materials

- SCM: Spin-off company from VU (1995)
	- Develop & market Amsterdam Density Functional (ADF)
	- Continued development: Amsterdam Modeling Suite
- ADF = first DFT code for chemistry (1970s) Baerends@VU (>'73), Ziegler@Calgary(+) (>'75)
	- 80s: support industry for catalysis Mitsui, Shell, Akzo, Unilever
- 22 people (15 senior PhD's) + 3 EU fellows
	- New development, support, document, optimize
- Many collaborations non-profit & commercial
	- \circ 160+ authors
	- New functionality, real-life pilot cases
- 1000s of users academia, government & industry

EMMC Meeting, March 2-3, 2021 © SCM 3

Bottom up Property Prediction

Properties are determined at the atomistic level => predict, understand & improve through modeling

Solar cells: long lifetime & high efficiency

EMMC Meeting, March 2-3, 2021 \circ SCM 4

Materials: light & durable Paint/glass: optical properties, coating

Batteries: fast recharge, high capacity

Bottom up Property Prediction

OLEDs, QLEDs: color, lifetime & efficiency

EMMC Meeting, March 2-3, 2021 © SCM 5

Glass, coating: optical properties, conductivity

Batteries: fast recharge, high capacity

Atomistic modeling • Decreases search space • Builds understanding

(m)CPU: high capacity, I-V profiles

OLEDs: Optimize many materials & properties

- Maximize luminescence
- Optimize color
- Minimize destructive processes
- Optimize charge & exciton transport

EMMC Meeting, March 2-3, 2021 \circ SCM 6

Optimize OLED emitter lifetimes

ADF 2005: Spin-orbit TDDFT => [phosphorescence lifetimes](https://www.scm.com/adf-modeling-suite/wizard/organic-electronics/modeling-phosphorescent-lifetimes-of-oled-emitters/)

- **BASF**: efficient blue emitter [\(Adv. Mater. 2010\)](https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.201002254), [patent 2016](https://patentscope.wipo.int/search/en/detail.jsf?docId=US223550831) (=> UDC)
- **DuPont**: protocol for screening lifetimes [\(JPCC 2013](http://dx.doi.org/10.1021/jp410576a))

EMMC Meeting, March 2-3, 2021 © SCM 7

PCCP 16, 14523 [\(2014\)](http://dx.doi.org/10.1039/C3CP55438D)

Optimize OLED emitter color / emission width

-
-
- Excellent agreement <u>vibrational progression FCF</u> T₁-S₀
- 0-0 well reproduced by Delta SCF calculation (22,000 cm-1)

EMMC Meeting, March 2-3, 2021 © SCM 8

- Z.-M. Su et al [Dyes & Pigments 2017,](http://dx.doi.org/10.1016/j.dyepig.2017.04.001) Bredas et al. [J. Am. Chem. Soc. 2017](http://dx.doi.org/10.1021/jacs.6b12124)
- **OSRAM**: [patent 2018](https://patentscope.wipo.int/search/en/detail.jsf?docId=US217780312)
- **Cynora**: [patent 2019](https://patentscope.wipo.int/search/en/detail.jsf?docId=US133782272)
- **Samsung**: blue TADF emitter, [Nanomat. 2019;](https://doi.org/10.3390/nano9121735) [Organic Electronics 2020](https://doi.org/10.1016/j.orgel.2019.105595)

Optimize TADF emitters

Spin-orbit TDDFT => [Intersystem crossing](https://www.scm.com/doc/Tutorials/Advanced/ADF_optimizing_TADF_emission.html)

- Minimize S_1 -T₁ gap
-
- Maximize k_{phos} & k_{TADF}

- o Target desired property
- Encode properties to (sub)structures
- Include constraints & boundaries

Forward vs. inverse property prediction

Inverse prediction

- \circ Structure => property
- o High-throughput (costly)
- o 'Stupid', inside-box design

Forward prediction

EMMC Meeting, March 2-3, 2021 © SCM 10

- [2003](https://aip.scitation.org/doi/10.1063/1.1615476): easy to get [transfer integrals](https://www.scm.com/adf-modeling-suite/wizard/organic-electronics/electron-and-hole-mobilities-in-organic-electronics/) from ADF (fragment-based)
- [2007](https://aip.scitation.org/doi/pdf/10.1063/1.2727480): organic semiconductors (**BASF**): hole and electron mobility

- Environment polarization
- Charge generation
- Charge recombination
- **Exciton transfer**

- **Samsung**: [many patents](https://patentscope.wipo.int/search/en/detail.jsf?docId=US173670131&_cid=P12-JXU4JX-97111-1) (2015-now)
- Solubility / miscibility: COSMO-RS

Optimize charge mobility (OLED, OFET)

From adiabatic states

• New collaboration SIMBEYOND

- cm
- Integrate Atomistic with Device Modeling => Single platform

Extending to device modeling

nm

Å

EMMC meeting 2021 © SCM & SIMBEYOND 12

Device-level physics

- Electronic processes
	- Charge injection, hopping and collection
	- Coulomb interactions, external fields and image potential
- Excitonic processes

• Degradation processes

Exciton-polaron quenching

- Exciton diffusion:
- Förster
- Dexter

EMMC meeting 2021 © SCM & SIMBEYOND 13

Exciton generation **exciton**

(Reverse) Intersystem crossing

Device-level predictions & insights

3D visualization

SCM

EMMC meeting 2021 © SCM & SIMBEYOND 14

[ReaxPro](https://www.scm.com/about-us/eu-projects/reaxpro-multiscalereactormodeling/): Reactive Materials & Process Design as a Multi-scale / Multi-equation Problem

AutoCheMo: Automatic generation of Chemical Models

- Complex reaction networks
- Application-driven automated ReaxFF force field parameterization
- Efficient (Bayesian) methods to estimate ReaxFF parameters
- Large amplitude motions

4 PhD projects, in collaboration with Universities of Gent and Aachen:

Also working with KAIST on ACE-Reaction (now also working on machine learning) Y. Kim, J. W. Kim, Z. Kim and W. Y. Kim, Chem. Sci. 2018, 9, 825; JPCA 2019, 123, 4796.

EMMC Meeting, March 2-3, 2021 © SCM 16

Two-open-shell LFDFT calculation of LiYF₄:Pr³⁺

Modeling display materials

Charge mobility

- o ADF: transfer integrals, couplings through FDE
- o ADF: NEGF (single-molecule junction)
- o ADF: charge transfer descriptors
- o BAND: effective mass (band transport)

• Luminescence, including phosphorescence

- o ADF: spin-orbit coupling TDDFT (k_phos, k_RISC for TADF, vibronic fine structure)
- o LFDFT: luminescence of Ln-doped ceramics
- o BAND: core-hole states in bulk / surfaces
- o ADF: quantum dots fast TDDFT methods
- (Non-radiative decay, exciton mobility, exciton-phonon coupling, ...
- BAND: band gaps, work functions
	- o Proper 2D: solvation, E field, polarization

Modeling battery materials

- o COSMO-RS for ionic liquids
- o (e)ReaxFF: [electrolyte degradation](../Videos/ereaxff.mp4)
- o ReaxFF, DFTB, BAND, polymer properties
- (Dis)charge processes
	- o GCMC with ReaxFF, or DFT(B)
- Understand battery 'operando'
	- o ADF Spectrocscopy: NMR, NEXAFS

EMMC Meeting, March 2-3, 2021 © SCM 18

• New collaboration Wasatch Molecular **Coarse Grained ReaxFF APPLE&P** Hopping **Degradation**

- Atomistic to meso-scale Coarse Grained => Polarizable -> Reactive FF
- Applications to **batteries** and **fuel cells**
	- \circ Fuel cell membranes: Polymers 2018, 10, 1289; doi:10.3390/polym10111289

Extending to larger scales

Polarizable Force Fields (with WMI)

- Many-body interactions
- Transferable repulsion-dispersion + bond increments
- Thermodynamic & transport properties

Polarizable

[mmim][TFSI] [emim][TFSI] [bmim][TFSI] $[C₆min][TFSI]$ $[C_smin][TFSI]$ [bpy][TFSI] $[nC_4H_9(CH_3)_3N][TFSI]$ [bmpro][TFSI] [bmim][$CF₃SO₃$] [bmim][CF_3 - CO_2] [bmim][BETA] [bmim][BF_4] [bmim][PF_6] [bmim][BF_4] [bmim][BF_4] [bmim][PF_{6}]

MD simulations using APPLE&P force field predict ion dynamics within 15-20% from experiment.

More transferable than "scaled" non-polarizable force fields with ion charges rescaled by 0.6-0.8.

Self-diffusion coefficients of ILs

Conductivity with APPLE&P \equiv > multiscale

Sodium intercalates in graphitic cathodes (new FF with MCFF) [PCCP 18, 31431 \(2016\)](http://dx.doi.org/10.1039/C6CP06774C)

eReaxFF: electrolyte decomposition at the SEI [J. Phys. Chem. 120, 27128 \(2016\)](http://dx.doi.org/10.1021/acs.jpcc.6b08688)

Modeling polymers

Formation

- o Whole of AMS: catalysis
	- [Reaction rates,](https://www.scm.com/doc/Tutorials/StructureAndReactivity/ZN-PES-Scan_TST.html) spectroscopy, catalyst design
- o ReaxFF (bond boost): [cross-linking](https://www.scm.com/doc/Tutorials/MolecularDynamicsAndMonteCarlo/PolymersBondBoost.html)
- o Solvent effects: COSMO(-RS)
- Mechanical properties
	- o Moduli, [CTE, Tg](https://www.scm.com/doc.trunk/Tutorials/MolecularDynamicsAndMonteCarlo/PolymersGlassTransitionTemp.html#glass-transition-temperatures-of-thermoset-polymers), [stress-strain, yield point](https://www.scm.com/doc/Tutorials/MolecularDynamicsAndMonteCarlo/PolymersMechanicalProperties.html)
	- o ReaxFF: Degradation rates & mechanisms
	- o Heat transport (T-NEMD)
- Solubility and related
	- o COSMO-RS, QSPR
- (non-linear) optical properties, charge mobility o ADF & BAND

- Understand & predict how cross-linking effects mechanical properties
	- \circ Exp = slow: minutes to hours to reach ~80% cross-linking
	- \circ ReaxFF: simulate few ns => accelerate kinetics to get highly xlinked structures

Epoxy polymers: structure & properties

Material Systems

Properties of cross-linked epoxy polymers

IDPA

1.30

 $Q_{\text{B}}^{1.20}$
 $Q_{\text{B}}^{2.1.20}$
 $Q_{\text{B}}^{1.00}$

1.00

0.90

• Good predictions: densities $8T_{g}$

BISF

• Aliphatic amine $=$ > lower T_{q}

DETDA

- Coefficients of thermal expansion too low
	- o Reparameterize ReaxFF?
- Modulus: good linear fit (calc = high strain)

Modulus (GPa)
 ω \Rightarrow ω

Properties of cross-linked epoxy polymers

 $y = 9E-09x + 2.8782$

 $R^2 = 0.9713$

 $y = 3E-09x + 2.754$

 $R^2 = 0.8453$

 $= 4E-09x + 2.5089$ $R^2 = 0.9573$

▲ BisA/T403

BisA/IPDA

· BisA/DETDA

- \circ bulk stress tensors = faster
	- ReaxFF, DFTB

 $1E+9$

- Yield point(s)
- Strain ratios

Odegard group [J. Polym. Sci. B, 56, 255-264 \(2018\)](https://doi.org/10.1002/polb.24539)

- Atomic Oxygen bombardment studying low earth orbit conditions
- Silica is high initial resilience, Teflon lowest erosion rate
	- \circ Good heat transfer properties can help; Kapton can be stabilized with silica.

Degradation of polymers

[J. Phys. Chem. A, 2014, \(118\), 2780](http://dx.doi.org/10.1021/jp4121029)

Polymer mixture design with COSMO-RS

• COSMO-RS: mixture thermodynamics

- **EXECUTE:** Liquid-activity coefficient
- Fit to experimental data (predictability outside fit)
- **Pseudo-chemical potential from quantum mechanics (surface charges)**
- Existing design approaches focus on property targeting (QSPR)
- Mixing => requires free energies, activities

How we help you develop new materials

- Advanced computational chemistry software
	- o Amsterdam Modeling Suite: from DFT to reactive potentials
	- o Easy to use, powerful methods
- Integrating multi-scale methods
	- o ReaxPro: kinetics, fluid dynamics for catalysis
	- o Simbeyond: atomistic-to-device scale OLED modeling
	- o Wasatch: battery & fuel cell modeling
- Integrating Machine Learning methods
- Expert scientists and software developers
	- o Decades of expertise in pragmatic software development
	- o Support & development to help your RD&I

COSMO-RS Fluid Thermodynamics & **Property Estimation**

ReaxFF Reactive Force Field

MLPotential Machine Learning Potentials

DFTB & MOPAC

Fast approximate DFT Semiempirical

BAND Periodic DFT

ADF Molecular DFT

- ADF: powerful molecular DFT
	- Reactivity, spectroscopy
- BAND: periodic DFT, QE & VASP interface (2D) Materials, spectroscopy, analysis
- DFTB & MOPAC: fast electronic structure
- ReaxFF: Reactive MD complex systems
- **MLPotential**
	- Backends SchNetPack, sGDML, PiNN, TorchANI
- COSMO-RS: fluid thermodynamics o VLE, LLE, logP, solubility
- AMSdriver: PES exploration, MD, MC Hybrid: multi-layer, QM/MM, QM/QM'
- Integrated GUI, PLAMS: python scripting

Amsterdam Modeling Suite

Continuum

Materials

Nano

Relevant materials and applications

• OLEDs, OFETs, OPVs

- o Charge & exciton mobility
- o Absorption, luminescence
- o Multi-scale device modeling

• Catalysis

- o Map reaction pathways
- o Optimize TOF
- o Atomistic-to-plant multi-scale

Batteries

- o Electrolyte solubility
- o Degradation
- o (Dis)charge processes, mobility

• Polymers

- o Mechanical: CTE, Tg, yield point
- o Optical: n_i, loss, κ
- o Reactivity: formation, degradation

Discuss your research challenge!

We love to hear from you! goumans@scm.com www.scm.com

Which materials would you like to develop faster? What are the key properties?

