IM2D: an industry-driven interoperable solution for the simulation-aided
design of emerging electronics
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Motivations and background
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Memory devices or storage-class memories
The new wave semiconductor industry

O+ The world value of the semiconductor market is approx.
€ 423 billion

Challenges and open problems
- complex non-Si-based materials

O+ Currently, Europe is at current 9% world share. Europe's
ambition is to attain 20% world market share in the
semiconductor industry.
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- device reliability & variability
- complex architectures

O+ Semiconductor industry and electronics are in an {71, Financial and investment
. : indicators all increased YoY.
expansion stage il Percent of respondents predicting Priories for new electronics
» an increase next year:
, , , - characterization/optimization/design of materials
O« Semiconductor leaders are taking a future-oriented s B0% b - /op 2 / 5
approach and considering new end markets beyond the Comtout 430/, Compeny o . . .
PC, such as Al, loT, and autonomous vehicles. workforce - characterization/ optimization/ design of devices
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Materials at device level Industry needs Modelling
O+ The interplay between materials and the influence they have on the device is hard to Tremendous challenge for industrial users > Can efficiently contribute to industrial innovation
determine. hu - reduction of experimental trials
ge amount of
- time - new top-down and bottom-up design paradigms
Need for investigation of materials at device level: the materials - material and personnel consumption - - understanding of physical mechanisms
- robust and validated results

characteristics are inherently connected to the device performance - advanced technical skills : :
- data analysis —> Reduction of costs and time to market

requirements i
- High costs
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Of Level I: syntactic interoperability = structural interconnections among physical models and codes, e.g.
Electronic and atomistic software

coupling-and-linking of models and the generation of a data pipeline between existing codes

- mature reality for high-level materials modelling oo Optiisaion o
- scientifically driven but not industry driven Ao ' [] = Necessary for automation, data curation and
- requirement of advanced specialized skills g Nl _‘ i traceability
Such know-how is thus not readily available to Material < i o " Not sufficient to reduce the complexity of the
industry, especially in SMEs that often lack R&D : |, Sy > 3 problem - need to go beyond software
resources S : SR _| |6 compatibility
Industry-driven software Dev st iy | " Formalize and implement workflows specific to
et o L : oo evice s | target users’ needs and skills
o ] - optimized to model complex devices and circuit =
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architectures,
- based on characteristics of the material in the device
configuration

O« Level II: semantic interoperability = the description of the information meaning in a formal and machine-
readable and processable way (metadata and schema based on semantics)

R’“’ Source: amat These parameters are not available for complex materials - interdependence between concepts and data: concepts provide the meaning for a set of data < —=> data sets
A. Padovani et al. IEEE TRANS. ELEC. DEVICES, VOL. 62, NO. 6, JUNE 2015 such those used for synaptic electronics ' cannot be exchanged without a linking concept that describe their meaning
At present materials and device modelling are far apart semantic syntactic ] .
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re-use and integration of existing software and interoperability are key to provide L\
industry-ready software solutions that can be taken by third parties backend
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MATERIALS MODELLING Materials-to-device o;EIMZD Device-to-materials workflow MIM electrical characterization (IMEC) DFT materials analysis (CNR)
fully ab initio description 818 = Measured experimental data are loaded (a) Current and (b) conductance densities - Model structure for amorphous
: : into the defect discovery tool of simulated (lines) and measured (symbols) structure at room temperature = local-
( O"”""‘””“‘“’“” . Input: Experimental < Ginestra™ (DDT) the gate Ileakage at different temperatures on 20nm-thick order and folding structures
Vaﬁaﬁonsmhethem:"m""\’ | currents as a function of the TiN/GesoSes,/TiN capacitors.
. FUIDFT calculation temperature. - Average model has a mobility gap of
SleSta = Device, material and trap parameters to ~1.0 eV partially filled by localized states
SEMANTIC be extracted (as well as their variation DDT MIM defect analysis (AMAT) (traps)
INTEROPERABILITY ranges) are selected from a dedicated The defect bands extracted from the DDT
Postprocessing outr;ut Jinput TOOL panel of the DDT. fitting D21 I-V and G-V data are located on - Trap states localized on low-coordinated
(materials property) concepts and data = Comparison/analysis with DFT average at ~0.45eV from Ge;ySes, valence Ge-structures and Ge-Ge chains =2
Variations on the theme " Device simulation simulations. band top. effective Se-vacancy defects
DEVICE MODELLING e T o .o - Effective Se vacancies (deficiencies)
atomistic and continuum OQAl IDA
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